
To appear in Proc., COMPASS ’97

Tools for Formal Specification, Verification, and Validation of Requirements

Constance Heitmeyer, James Kirby, and Bruce Labaw�

Center for High Assurance Computer Systems (Code 5546)
Naval Research Laboratory, Washington, DC 20375

fheitmeyer, kirby, labawg@itd.nrl.navy.mil

Abstract

Although formal methods for developing computer sys-
tems have been available for more than a decade, few have
had significant impact in practice. A major barrier to their
use is that software developers find formal methods diffi-
cult to understand and apply. One exception is a formal
method called SCR for specifying computer system require-
ments which, due to its easy to use tabular notation and its
demonstrated scalability, has already achieved some suc-
cess in industry. Recently, a set of software tools, including
a specification editor, a consistency checker, a simulator, and
a verifier, has been developed to support the SCR method
[9, 11, 5]. This paper describes recent enhancements to the
SCR tools: a new dependency graph browser which displays
the dependencies among the variables in the specification,
an improved consistency checker which produces detailed
feedback about detected errors, and an assertion checker
which checks application properties during simulation. To
illustrate the tool enhancements, a simple automobile cruise
control system is presented and analyzed.

1. Introduction

Although formal methods for developing computer sys-
tems have been available for more than a decade, few of
these methods have had significant impact in the develop-
ment of practical systems. A major impediment to the use
of formal methods in industrial software development is the
widespread view that the methods are impractical. Not only
do developers regard most formal methods as difficult to
understand and apply. In addition, they have serious doubts
about the scalability and cost-effectiveness of the methods.

A promising approach to overcoming these problems is to
hide the logic languages associated with most formal meth-
ods and to adopt a notation, such as a graphical or tabular
notation, that developers find easier to user. Specifications
in the more “user-friendly" notation can be translated au-
tomatically to a form more amenable to formal analysis.
Moreover, to scale effectively, a formal method must be

�This work was supported by ONR and SPAWAR.

supported by powerful, easy to use tools. To the extent fea-
sible, the tools should detect software errors automatically
and provide easy to understand feedback useful in tracing
the cause of an error.

By providing a “user-friendly" tabular notation with
demonstrated scalability, a formal method called SCR for
specifying the requirements of computer systems has al-
ready achieved some success in practice. Since SCR’s in-
troduction more than a decade ago [13, 1], many industrial
organizations, including Lockheed, Grumman, and Ontario
Hydro, have used the SCR method to specify requirements.
To support the SCR method, we have recently developed a
set of integrated software tools [9, 11, 5] to specify and an-
alyze system and software requirements. The tools include
a specification editor for creating and modifying a require-
ments specification, a simulator for symbolically executing
the specification, a consistency checker which checks the
specification for well-formedness (e.g., syntax and type cor-
rectness, no missing cases, no circular definitions, and no
unwanted nondeterminism), and a verifier for analyzing the
specification for critical application properties.

To place SCR specifications in perspective, this paper
first compares an SCR requirements specification with two
other specifications, an abstract model useful in verification
and a specification using the commercially available prod-
uct STATEMATE. It then describes the current status of the
SCR tools, including three major enhancements added since
the publication of [10, 9]. These are a new dependency
graph browser which displays the dependencies among the
different variables in the specification, an improved consis-
tency checker which produces examples of missing cases
and nondeterminism when either a coverage or disjointness
error is detected, and an assertion checker which tests vari-
ous application properties during simulation. We also show
how our tools support DURATION, a language feature orig-
inally proposed by van Schouwen [25] to represent time in
SCR specifications. To illustrate the SCR method and our
tools, a requirements specification of a simple automobile
cruise control system is presented and analyzed. Finally,
we present some lessons learned in experimental use of our
tools in industrial applications.



2. SCR Method: An Overview

2.1. SCR Specifications

A recent article by Shaw [22] presents and discusses a
number of different specifications of an automobile cruise
control system. Each of these specifications is constructed to
satisfy different objectives. For example, Atlee and Gannon
use a logic language to specify the different “modes" of the
cruise control system [4]. Their logic language specification
is then fed to a model checker that analyzes the specification
for violations of selected properties. Another specification
of the cruise control system by Smith and Gerhart is rep-
resented using the graphical notation of STATEMATE and
is described by the authors as a “design exercise" [23]. We
refer to the former specification as an abstract model and
the latter as the STATEMATE specification.

One difference between the abstract model, the STATE-
MATE specification, and an SCR specification of the cruise
control system lies in the notation. The abstract model is ex-
pressed in a logic language, the STATEMATE specification
in a graphical notation, and the SCR specification in a tab-
ular format. Another difference is the target audience. The
abstract model is designed to be processed by a computer,
whereas both the SCR specification and the STATEMATE
specification are engineering documents, designed to be read
by software developers. The three specifications also differ
in a third respect—namely, in the specific information each
contains about the required system behavior.

The objective of the SCR specification is to describe the
externally visible behavior of the Cruise Control System.
To achieve this, the specification must describe the required
relation REQ between the monitored variables, which repre-
sent quantities in the environment that the system monitors,
and the controlled variables, which represent environmen-
tal quantities that the system controls. In the cruise control
system, the position of the cruise control lever is an exam-
ple of a monitored variable; the position of the throttle is
an example of a controlled variable. The REQ relation be-
tween the monitored and controlled variables is one of the
four relations of the Parnas-Madey Four Variable Model, a
formal framework for describing the required behavior of a
computer system [20].

Atlee and Gannon’s abstract model is used in verification
and, as a result, omits many details of the required system
behavior. For example, it does not describe the behavior
of the throttle. Because the properties analyzed in [4] are
independent of the throttle behavior and because a model
used in verification should only include information needed
to reason about selected properties, omitting information
about the throttle is appropriate. In fact, eliminating irrele-
vant information is especially important for model checking:
without dramatic reductions in the size of the state space to
be analyzed, model checking is infeasible.

The STATEMATE specification is in some respects more
detailed and in other respects less detailed than the SCR
specification. For example, it presents two views of the
required behavior, the functional view and the behavioral
view, and distinguishes control flows, data flows, and data
stores. The SCR requirements specification omits this detail
(as does the abstract model) because such detail is unneeded
for describing externally visible behavior. It presents a sin-
gle “view" of the required behavior and makes no distinction
between control flow and data flow nor between data flows
and data stores.

The SCR environmental variables (the monitored and
controlled variables) are often more abstract than the vari-
ables selected when other methods are applied. For example,
the SCR specification of cruise control uses the monitored
variable Speed to denote the speed of the automobile. In
contrast, the STATEMATE specification uses calculations
based on rotations of the automobile’s drive shaft to rep-
resent the automobile’s speed. In other cases, the SCR
environmental variables are less abstract than the variables
selected using other methods. The SCR specification of
cruise control is explicit about the relationship between the
value of the monitored variable Lever and the position in
which the driver holds the cruise control lever. In contrast,
the STATEMATE specification abstracts from much that is
directly observable by the driver.

In contrast to the abstract model, the SCR requirements
specification is a repository for all of the information that
developers will need to construct the software for the cruise
control system. Hence, it is necessarily more detailed and
less abstract than a model useful in verification. At the same
time, an SCR specification contains less information than,
say, a software design document, since its goal is to describe
the blackbox behavior of the system only.

The SCR requirements method provides detailed guid-
ance on exactly what information belongs in a requirements
document, a conceptual model of the system to be devel-
oped, and special language constructs to represent the sys-
tem requirements. This detailed guidance, system model,
and language constructs specialized for requirements spec-
ification are lacking in an approach based on STATEMATE
because STATEMATE, a general-purpose method that can
be applied throughout software development, is not cus-
tomized for requirements specification.

Although the requirements specification for the Cruise
Control System presented in this paper is close to a “real"
requirements specification useful to software developers,
three classes of information must be added for the specifi-
cation to be complete: a description of the I/O devices the
system uses to measure and compute the monitored and con-
trolled quantities, the required timing and accuracy, and the
constraints imposed on the system by physical laws and the
environment (the relation NAT in the Four Variable Model).

2



2.2. SCR Requirements Model

To provide a precise and detailed semantics for the SCR
method, we have developed the SCR requirements model,
which represents a system as a finite state automaton and
describes the monitored and controlled variables and other
constructs that make up an SCR specification in terms of
that automaton [12, 11]. To concisely describe the required
relation between the monitored and controlled variables,
our model uses four constructs—modes, terms, conditions,
and events. A mode class is a partitioning of the system
states. Each equivalence class in the partition is called a
system mode (or simply mode). A term is any function of
monitored variables, modes, or other terms. A condition
is a predicate defined on a system state. An event occurs
when the value of any system variable changes (a system
variable is a monitored or controlled variable, a mode class,
or a term). The notation “@T(c) WHEN d” denotes a
conditioned event, which is defined by

@T(c) WHEN d
def
= :c ^ c0 ^ d;

where the unprimed condition c is evaluated in the “current”
state, and the primed condition c0 is evaluated in the “new”
state. The environment may change a monitored quantity,
causing an input event. In response, the system updates
terms and mode classes and changes controlled quantities.

2.3. Cruise Control System

To illustrate the SCR constructs, this paper contains a
specification of a real automobile cruise control system orig-
inally specified by Kirby [16]. To make the specification
more understandable, our specification describes only a sub-
set of the behavior in the original. A special feature of the
Cruise Control System is that time is an important monitored
quantity. For example, to cause the throttle to accelerate the
automobile, the driver must hold the cruise control lever in
the const positon for more than 1/2 second. Below, we
show how the DURATION construct can be used to repre-
sent this and other timing behavior in the specification of
the Cruise Control System.

The Cruise Control System monitors several quantities in
the automobile’s environment, such as the ignition switch,
the position of the cruise control lever, the automobile’s
speed, and a service reset switch, and uses this informa-
tion to control a throttle and to determine when a service
light illuminating the message, “Major Service Required"
is off, on, or flashing (i.e., intermittent). For example, if
the ignition is on, the engine running, and the brake off,
the driver can invoke cruise control by moving the cruise
control lever to the const position. Once cruise control
has been invoked, the system uses the automobile’s actual
speed to determine whether to set the throttle to accelerate or

Off Inactive

Cruise Override

Throttle

Software

Cruise Control System
Sensor1

Throttle
Device

Sensor2

Sensor3

Terms
DesiredSpd
DurationConst{

Mode
Class

Input
Devices

Output
Devices

SvcLight

ActualMiles

Env.

ActualSpeed
Brake

EngRunning
IgnOn

Lever
SvcReset

SvcLight
Device

SensorN

...

...

Env.

Figure 1. Cruise Control Specification.

decelerate the automobile, or to maintain the current speed.
The driver overrides cruise control by engaging the brake,
resumes cruise control by moving the lever to resume,
and exits cruise control by moving the lever to off. To
determine when to illuminate the service light, the system
computes the number of miles traveled since the last main-
tenance and illuminates the light intermittently when one
threshold is reached and continuously when a higher thresh-
old is reached.

Figure 1 shows how SCR constructs can be used to spec-
ify the requirements of the Cruise Control System. The mon-
itored variables, IgnOn, EngRunning, ActualMiles,
ActualSpeed, Brake, Lever, and SvcReset, repre-
sent the state of the automobile’s ignition and engine (each
is off or on), the readings of the odometer and speedome-
ter, and the positions of the brake, cruise control lever, and
service reset switch. Although it is not shown in Figure 1,
the distinguished monitored variable Time is also required
in this specification. The controlled variables, Throttle
and SvcLight, represent the state of the throttle and the
service light.

The specification contains one mode class and three
terms. The mode class CruiseControl contains four
modes, Off, Inactive, Cruise, and Override. At
any given time, the system must be in one of these modes.
Turning the ignitionon causes the system to leaveOffmode
and enter Inactivemode, while turning the cruise control
level to const when the brake is off and the engine run-
ning causes the system to enter Cruise mode. To override
cruise control (i.e., enter Override), the driver turns the
lever to off or applies the brake. The term DesiredSpd
is set to the automobile’s actual speed under certain condi-
tions, e.g., if the driver turns the lever to const when the
ignition is on, the engine running, and the brake off. The
term SvcMiles contains the number of miles driven since
the last maintenance; the term MilesSvcReset is used
to compute SvcMiles.

The specification also includes several conditions and
events. An example of a condition in the specification is
“DesiredSpd > ActualSpeed". Two examples of
input events are “@T(Lever=off)" (the driver moves
Lever from a position, such as release, to off) and
“@F(IgnOn)" (the driver turns the ignition off), where

3



Table 1. Mode Table for CruiseControl.

Table 2. Condition Table for Throttle.

“@T(A)" denotes the event of A becoming true, “@F(A)"
denotes the event of A becoming false. An example of a con-
ditioned event is “@T(Lever=resume) WHEN IgnOn
^ EngRunning ^ :Brake" (the driver moves Lever to
resume when the ignition is on, the engine running, and
the brake off).

2.4. SCR Tables

Among the tables in SCR specifications are condition,
event, and mode transition tables. Each table defines a math-
ematical function. A condition table describes a controlled
variable or term as a function of a mode and a condition;
an event table describes a controlled variable or term as a
function of a mode and an event. A mode transition table
describes a mode as a function of a mode and an event.

Tables 1–4, each constructed with our toolset, are part
of the system requirements specification for the Cruise
Control System. Table 1 is a mode transition table de-
scribing the mode class CruiseControl as a function
of the current mode and the monitored variables Lever,

Table 3. Event Table for DesiredSpd.

IgnOn, EngRunning, and Brake. The table defines all
events that change the value of CruiseControl. For
example, the third row states, “If CruiseControl is
Inactive, IgnOn and EngRunning are true, Brake
is false (i.e., off), and the driver moves Lever to const,
then CruiseControl enters the mode Cruise." Events
that do not change the value of the mode class are omitted
from the table.

Table 2 is a condition table describing the controlled
variable Throttle as a function of the current mode and
the variables ActualSpeed, DesiredSpd, and Lever.
It uses a new language feature supported by our tool called
DURATION. This feature allows the specifier to define a
predicate on the lengthof time the system has been in a given
state. To illustrate how DURATION is used, we consider
the condition, “DURATION(Lever = const) > 500" in the
first row of Table 2. This condition is true if the cruise
control lever has been in const for more than 500 ms.
Thus, if the lever enters the const position at time t and
remains there for 600 ms, at time t + 400, the condition
“DURATION(Lever = const)> 500" is false; at time t+550,
the condition is true.

Table 3 is an event table describing the term
DesiredSpd as a function of the current mode and the
variables IgnOn, EngRunning, Brake, and Lever.
Like mode transition tables, event tables make explicit only
those events that cause the variable defined by the table to
change. Table 4 is also an event table. It describes the
controlled variable SvcLight as a function of the current
mode and the variables SvcReset and SvcMiles.

To illustrate how SCR tables can be transformed into
functions, we present below the function that can be derived
from Table 1 using our model [11]. This function describes
the required behavior of the mode class CruiseControl.
(To save space, we abbreviateCruiseControl as CC and
EngRunning as EngR.)

4



Table 4. Event Table for SvcLight.

CC0 =

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

Off if [CC=Inactive ^ @F(IgnOn)] _
[CC=Cruise ^ @F(IgnOn)] _
[CC=Override ^ @F(IgnOn)]

Inactive if [CC=Off ^ @T(IgnOn)] _
[CC=Cruise ^ @F(EngR)]_
[CC=Override ^ @F(EngR)]

Cruise if [CC=Inactive ^ @T(Lever=const)
^ IgnOn ^ EngR ^ :Brake] _
[CC=Override^ [@T(Lever=resume)
_ @T(Lever=const)] ^
IgnOn ^ EngR ^ :Brake]

Override if CC=Cruise ^
[@T(Brake) _ @T(Lever=Off)]

CC otherwise

The dependencies set Dr of a variable r is the set of
variables that determine the value of the variable. Because
variables in SCR specifications can depend on variables in
both the current state and the new state, both the unprimed
and primed versions of a variable can appear in a dependen-
cies set. From Table 1, we can derive the dependencies set
DCC for the CruiseControl mode class:

fCC, IgnOn, IgnOn’ ,Brake, Brake’ ,Lever, Lever’ , EngR, EngR’g

The value CruiseControl is in the dependencies set
DCC because the new value of CruiseControl depends
on its current value. Each dependencies set Dr is the union
of two sets Dold

r and Dnew
r , where Dold

r (the old dependen-
cies set) is the set of variables on which variable r depends
in the current state and Dnew

r
(the new dependencies set) is

the set of variables on which r depends in the new state.
To avoid circular definitions, we require that the new de-

pendencies sets define a partial order on the variables in an
SCR specification [11, 12]. The monitored variables occur
first in the partial order because they only depend on changes
that occur in the environment (i.e., their dependencies sets
are empty). The controlled variables occur last because they
can depend on any of the other variables in the specification.
The mode classes and terms appear in the partial order be-
tween the monitored variables and the controlled variables.

Figure 2. Contents of the Specification.

3. Current Status of the SCR Tools

This section describes the current status of the five tools in
our toolset: the specification editor, the dependency graph
browser, the consistency checker, the simulator, and the
verifier. The dependency graph browser and the verification
capability are new. The specification editor, the consis-
tency checker, and the simulator have recently undergone
substantial improvements.

3.1. Specification Editor

To create, modify, or display a given requirements spec-
ification, the user invokes the specification editor. As il-
lustrated in Figure 2, the editor lists the dictionaries and
tables which make up the specification. The dictionaries
define the static information in the specification, such as the
names, values, and types of the variables; the user-defined
types; etc. The tables are organized into three groups: ta-
bles defining terms, tables defining controlled variables, and
mode transition tables.

Each specification contains five dictionaries: the con-
stant, type, mode class, variable, and assertion dictionaries.
Figures 3–5 show the variable, type, and assertion dictio-
naries for the cruise control system. Time, which appears in
both the variable dictionary in Figure 3 and the type dictio-
nary in Figure 4, is represented as an non-negative integer
with initial value zero. In each new state, time either stays
the same or increases. In the Cruise Control specification,
time is measured in milliseconds.

The assertion dictionary, a recent addition to the toolset,
lists a set of application properties that the specifier can test
via simulation, or verify using a model checker or mechan-
ical theorem prover. The assertion dictionary shown in
Figure 5 shows two kinds of properties: those that hold in

5



Figure 3. Variable Dictionary.

Figure 4. Type Dictionary.

every reachable state and those that hold in any pair of adja-
cent reachable states. To make it easy for users to formulate
the properties, the properties are expressed in standard logic
rather than some special logic, such as temporal logic. The
first property aBrakeOverride, which states “Brake )
Throttle=off," is one that must hold in every reachable
state. The assertion aInactive refers to variables in two
adjacent states. In the column labeled “D/E?" in Figure 5,
“E" and “D" indicate whether checking of the associated
assertion is enabled or disabled.

Figure 5. Assertion Dictionary.

3.2. Dependency Graph Browser

One criticism of SCR requirements specifications is that,
while they give detailed information about specific aspects
of the required system behavior, developing intuition about
how the different parts of the specification are related is diffi-
cult, especially for large specifications. To address this prob-
lem, we have developed a dependency graph browser that
displays the dependencies among the variables in a given
specification. Figure 6 contains a graph showing the depen-
dencies among the variables in the Cruise Control specifica-
tion. Our tool constructed the graph automatically from the

6



Figure 6. Dependency Graph.

requirements specification. The monitored variables appear
as the leftmost nodes in the graph, the controlled variables
appear on the right, and the nodes representing mode classes
and terms appear in the middle.

The dependency graph in Figure 6 provides important
information about the Cruise Control specification. For
example, it shows that the mode class CruiseControl
is defined in terms of the monitored variables IgnOn,
EngRunning, Brake, and Lever as well as its previ-
ous value. Review of the graph also shows that the two
controlled variables Throttle and SvcLight both de-
pend on the mode class CruiseControl.

The dependency graph can reveal the presence of errors
in the dependencies relation. Two kinds of errors are pos-
sible: circular dependencies and variables with incomplete
definitions. Circular dependencies can only occur among
variables in the new state. (The SCR semantics allow a
variable to depend on any variable in the current state [11].)
A variable has an incomplete definition when it does not
lie on some path in the graph that includes both a con-
trolled variable and a monitored variable. Two kinds of
incompleteness can occur: a variable is not connected to
a controlled variable (called a right orphan) or a variable
which is not a monitored variable has a null dependencies
set (called a left orphan). Figure 7 shows a graph with a
cyclic dependency, and Figure 8 shows a dependency graph
with a right orphan. In Figure 7, the thick arrow (between
MilesSvcReset toSvcLight) indicates a circular defi-
nition involving the controlled variable SvcLight and the
terms SvcMiles, and MilesSvcReset. In Figure 8, the
node labeled DesiredSpd is a right orphan because it is a
term on which no controlled variable depends.

Given a set of variables RF , the set of monitored vari-
ables IR � RF , the set of controlled variables OR � RF ,
and the dependencies sets Dr for each r in RF , we can
construct the dependency graph for the variables in RF .

Figure 7. Graph with a Cycle.

Figure 8. Graph with a Right Orphan.

Assuming that there are n levels in the dependency graph
with the monitored variables at level 1 and the controlled
variables at level n, then the sets of variables at each level,
B1, B2, : : : , Bn, can be computed recursively as follows:

Step 1:

� Let B = RF � IR and Bn = OR.

For Step k, k = 2; 3; : : : ; n� 1, compute Bn�1, Bn�2, : : :,
B2 as follows:

� Remove all elements of Bn�k+2 from B.

� If B = ;, then go to Step n.

� Otherwise, Bn�k+1 = fr 2 B j 8 r0 2 B : r 62 Dr0g.

Step n:

� B1 = IR.

By using the dependencies setsDr which describe all depen-
dencies, the above algorithm produces theBi’s for the graph
showing all dependencies. By using the new dependencies
sets Dnew

r , the above algorithm produces the Bi’s for the

7



Figure 9. Dependency Graph of Complete
Cruise Control.

graph showing the variable dependencies in the new state.
A slight modification of the above algorithm is required in
the presence of cycles.

For large specifications, the complete dependency graph
is too big to fit on the user’s display. Fortunately, a user
typically wants to study only a small subset of the depen-
dency graph. To display a subgraph, the user first finds the
portion of the graph of interest and uses the mouse to select
the variables of interest. Then, the user can display the sub-
graph containing all variables that each of the selected vari-
ables depends on, or alternatively all variables that depend
on the selected variables. Figure 9 shows the dependency
graph of the larger Cruise Control System originally spec-
ified by Kirby. Figure 6 shows the simple version of this
system specified in this paper, which has fewer variables.
To display this subset, the user selected the two controlled
variables Throttle and SvcLight and then extracted
the subgraph containing all variables on which these two
variables depend.

3.3. Consistency Checker

Our consistency checker [11] verifies application-
independent properties derived from our requirements
model. These checks determine whether the specifications
are well-formed. Among the errors the consistency checker
detects are syntax and type errors, instances of incomplete-
ness in the variable definitions and dictionaries, missing
initial values, unreachable modes, and circular definitions

Figure 10. Disjointness Error.

(such as the one shown in Figure 7). The tool also checks
for missing cases (called Coverage errors) and nondeter-
minism (called Disjointness errors).

To check for Disjointness and Coverage, the consistency
checker determines whether a given logical expression is a
tautology [11]. For example, to check two conditions c1

and c2 in a row of a condition table for Disjointness, the
consistency checker evaluates the logical expression c1 ^
c2 = false. To check conditions c1, c2, : : : , cn in a row of a
condition table for Coverage, the tool evaluates the logical
expression :[c1 _ c2 _ : : : _ cn] = false. To determine
whether these logical expressions are tautologies, our tool
applies a tableaux-based decision procedure that encodes
the algorithm in [24].

When our consistency checker detects Coverage and Dis-
jointness errors, it provides detailed feedback. The tool
identifies the location of the error (e.g., the specific table
entry or entries) and also provides an example of a system
state or two adjacent system states containing the error. This
detailed feedback significantly facilitates user correction of
errors.

To illustrate the tool’s handling of a disjointness error, we
have modified Table 1 to include between rows 3 and 4 a new
row stating, “If in Cruise mode the driver moves Lever
to off when Brake is off, then the system enters mode
Off." (See Figure 10.) To check the modified table for dis-
jointness, we invoked the consistency checker. The Results
Box in Figure 11 reveals a disjointness error. Double click-
ing on the line Disjointness ERROR... displays the
modified table with the pair of entries that overlap high-
lighted. (See Figure 10.) This also causes a specific case of
overlap to appear in the Messages Box of the Consistency
Checker (see the bottom of Figure 11). This message states
that any pair of adjacent states satisfying Lever6=off ^

Lever0

= off ^ :Brake ^ CruiseControl = Cruise

8



Figure 11. Feedback for Disjointness Error.

also satisfies both highlighted entries.
To check the two entries for Disjointness, the tautol-

ogy checker evaluated the expression, [@T(Lever=off) ^

:Brake] ^ [@T(Brake) _ @T(Lever=off)] = false. The
first disjunct in this expression,@T(Lever=off) ^:Brake

^@T(Brake) evaluates to false due to the assumption in our
requirements model that only one monitored variable can
change at each state transition [11]. The second disjunct,
@T(Lever=off) ^ :Brake ^ @T(Lever=off), can be
simplified to @T(Lever=off) ^ :Brake. Because this
expression does not equal false, the statement is not a tau-
tology. This expression provides the counterexample shown
in the Results Box in Figure 11.

To illustrate the tool’s handling of a coverage error, we
modified the first row of Table 2 (see Figure 12). We then
applied the consistency checker, which detected a coverage
error. Double clicking on the line Coverage ERROR...
displays the modified table with the row containing the rel-
evant entries highlighted. This also causes an example of
a missing case to appear in the Messages Box of the Con-
sistency Checker (see the bottom of Figure 13): the ta-
ble does not define the required behavior of Throttle for a
system state satisfying ActualSpeed > DesiredSpd ^

DurationConst � 500.

A Coverage error occurs when the tautology checker
processes a formula that does not evaluate to false. To find a
counterexample, we can express the formula in Disjunctive

Figure 12. Coverage Error.

Figure 13. Feedback for Coverage Error.

Normal Form and then search for the first conjunct that does
not evaluate to false. The tool presents this conjunct to the
user as a counterexample.

To evaluate the first row of the table in Figure 12 for
coverage, the tautology checker evaluated the expression1

[DesiredSpd � ActualSpd] ^ [(DesiredSpd 6=

ActualSpd) _ (DurationConst � 500)] ^

[(DesiredSpd � ActualSpd) _ (DurationConst �

500)] ^ true. The first conjunct of the expression in Dis-
junctive Normal Form is [(DesiredSpd � ActualSpd) ^

(DesiredSpd 6= ActualSpd) ^ (DesiredSpd �

ActualSpd) ^ true); which reduces to false. The
second conjunct is [(DesiredSpd � ActualSpd) ^

(DesiredSpd 6= ActualSpd) ^ (DurationConst �

500) ^ true]; which simplifies to (DurationConst �

500) ^ (DesiredSpd < ActualSpd): The tool presents
this simple form to the user as a counterexample (see Fig-
ure 13).

3.4. Assertion Checking during Simulation

The user can validate the specification by executing the
simulator and analyzing the result to ensure that the speci-
fication captures the intended behavior. In the new version
of the simulator, the user can also define several properties
believed to be true of the required system behavior and, us-

1Although our tool represents the condition
DURATION(Level=const) � 500 as DUR Lever EQ co � 500, in
the formulas we represent this expression as DurationConst � 500.
We represent other conditions containing DURATION similarly.

9



Figure 14. Simulator Display.

ing simulation, execute a series of scenarios to determine
whether any violate the properties.

The user begins by invoking the simulator and then step-
ping through a scenario, a sequence of input events. To
compute each new state from an input event and the current
state, the simulator applies the transform (i.e., next-state)
function of our requirements model. As each new state is
computed, the Simulator window is updated to reflect the
new state. The simulator also supports a second window,
called the Log. The Log, which shows the state history,
displays the initial state in full. For each subsequent state,
it lists the input event that caused the transition along with
each dependent variable (mode class, term, or controlled
variable) whose value has changed.

The scenario in Figure 15 demonstrates the behavior of
the Throttle as defined by Table 2. When the ignition
is turned on, the engine running, and the brake off, moving
the cruise control lever to const causes the throttle to
maintain the current speed of 60 mph (State 6). Once the
driver releases the lever and the actual speed drops to 55
mph, the throttle accelerates the automobile (State 9).

To display the rule that caused a given dependent vari-
able to change value, the user double clicks on the variable
and its value in the Log. The simulator then displays the

Figure 15. Log with a Violated Assertion.

Figure 16. Table with Rule Highlighted.

table that defines the variable, highlighting the rule that
caused the change. For example, double clicking on the
expression “Throttle = maintain" in State 6 of the
Log in Figure 15 causes the simulator to display the ta-
ble, shown in Figure 16, that caused Throttle to change
from off to maintain. As shown in Figure 16, the
simulator has highlighted the rule that caused the change:
“If the mode is CruiseControl, DesiredSpd equals
ActualSpeed, and DurationConst is no more than
500 ms, then Throttle is maintain."

The bottom line of Figure 15 demonstrates the detection
by the simulator of a violated assertion. The user simply
clicks on the line in the Log reporting the violation to display
the violated assertion. The tool then displays the assertion
dictionary with the violated assertion highlighted (Figure 5,
which omits the highlightingto improve readability). In this

10



Figure 17. Mode Table with Rule Highlighted.

case, the violated assertion, aBrakeOverride, states that
when the brake is applied, the throttle, which is controlled
by the cruise control, should be off. Inspection of the Log
(Figure 15) raises the question: Why didn’t the throttle go
off? Clickingon Throttle in State 10 of the Log (the last time
Throttle changed) displays the table defining Throttle (see
Figure 16). The table shows that Throttle = off only
when the mode class CruiseControl 6= Cruise. This
raises the question: Why is CruiseControl= Cruise
when the driver is pressing the brake (Brake= true in State
11)?

Clicking on CruiseControl in State 6 (the last time
it changed) displays the mode transition table (Figure 17).
We see that the system is still in mode Cruise while the
brake is pressed because there is no transition out of mode
Cruise when the driver presses the brake (denoted by
the event @T(Brake)). The event in the sixth row of the
mode transition table is @T(Lever= off). It should read
@T(Lever = off) OR @T(Brake).

Assertion checking during simulation differs in impor-
tant ways from model checking, a form of verification that
checks all system states (or all pairs of adjacent system
states) for violations. In contrast, assertion checking during
simulation is a form of testing which only analyzes a small
number of the possible states.

Assertion checking during simulation has an important
advantage: it is much less expensive computationally than
model checking. Although the complexity of model check-
ing simple properties is linear with respect to the state space,
the state space of SCR specifications, even small ones, is
usually huge. For example, a simple analysis of the vari-

able values and type information in the variable and type
dictionaries (see Figures 3 and 4) shows that the simple
cruise control system has over 1020 states. Because check-
ing SCR specifications requires checking both the current
state and the new state, the number of states to be analyzed
exceeds 1040! Hence, it makes sense to check assertions
via simulation early in the development of the requirements
specification to weed out errors; model checking is more
cost-effective when the requirements specification is more
mature. Assertion checking also requires much less effort.
Before model checking can proceed, an abstract model with
fewer states must be extracted from the specification. Gen-
erating such a model can be nontrivial.

3.5. Verifier

We recently integrated Spin [14], a tool that uses state
exploration to verify properties of finite state machine mod-
els, into our toolset [5]. Our state-based requirements model
provides a formal basis for using such a tool to verify re-
quirements specifications. To do model checking, the user
enters the property to be analyzed into the assertion dic-
tionary and then invokes Spin from within the toolset to
check the specification for the property. Because the large
state space associated with most SCR specifications makes
model checking infeasible, the user must provide Spin with
an abstract model of the SCR specification. Reference [5]
describes how our tool translates SCR specifications into
Promela, the language of Spin, and the techniques we de-
veloped to generate abstract models from an SCR specifica-
tion. To date, we have used Spin to verify two requirements
specifications, one a small safety injection system [10] and
the second a simple autopilot [6], for state invariant prop-
erties. These properties can involve any variables in the
specifications—terms and controlled variables as well as
mode classes and monitored variables.

4. Applying the Tools in Practice

Our tools, including two of the enhancements described
above, have already proven valuable in ongoing experiments
in which our group and colleagues in industry have applied
the SCR method to practical applications. Recently, the SCR
tools have been used extensively by engineers at Rockwell
Collins Avionics & Communications to develop and to ana-
lyze an SCR specification of a reasonably large and complex
avionics application. In developing the SCR specification,
the engineers detected numerous errors, some in creating the
SCR specification, others by running the simulator, and still
others by applying consistency checking [18]. A software
engineer at NORTEL has also used our tools to develop and
analyze an SCR specification of a Steamer Boiler Controller
Problem and also reports that the tools were helpful [26].

11



Our experience and the experience of colleagues at both
Rockwell and NORTEL is that software tools are not only
useful but essential for detecting errors in large specifica-
tions [18, 26]. Although manual inspections detect some
errors, our tools find errors that manual inspections miss no
matter how careful the developers are in preparing the spec-
ification. This is evidenced by the experience of an engineer
at Rockwell, who reports that

: : :even preliminary execution of the specifica-
tion and completeness and consistency checking
has found several errors in a specification that
represented our best effort at producing a correct
specification manually [18].

In the case of large specifications, detecting the cause of
an error can be very difficult and time-consuming without
counterexamples such as those described in Section 3.4. To
determine the cause of an error, the developer could analyze
the events and conditions highlighted by the tool, but such
analysis is tedious and error-prone. Most often, the tool
can find a counterexample much more quickly than a person
can. Once the developer understands the error, he or she can
look for a solution.

The dependency graph browser has been especially use-
ful during the early stages in the development of an SCR
requirements specification of a safety-critical Navy applica-
tion. The basis for this effort is the specification produced
by the Navy contractor. This specification, a combination
of prose, diagrams, and formal statements of the required
system properties, contains over 300 variables. Our un-
derstanding and that of the Navy manager of the depen-
dencies among the many system variables has been aided
enormously by the dependency graph generated by our tool.
Without understanding how the variables are related, speci-
fying the system behavior in SCR would be very hard.

Applying our techniques to practical systems has led us
to improve the tools in other ways as well. For example,
occasionally our consistency checker cannot determine in
a short time whether a complex expression is a tautology.
To prevent the tool from becoming mired in lengthy and
complex analysis, we have installed a new tool feature which
permits the user to set a maximum time for analysis of a
given logical expression. This allows the checker to perform
the easy analyses first. The more complex analyses can be
postponed, or alternatively the user can study the expression
that is causing a problem to determine why the analysis
requires so much time.

Although assertion checking during simulation is avail-
able, our industrial colleagues have not yet used this feature.
Once a more complete SCR specification of the Navy ap-
plication is ready, we plan to use assertion checking during
simulation to analyze the specification for the safety prop-
erties presented in the original contractor specification.

5. Related Work

The two techniques most closely related to ours are Table-
wise [15] and the Requirements State Machine Language
(RSML) and associated tools [17, 8]. Tablewise, a tech-
nique for processing decision tables, checks a table for both
Disjointness (called “consistency”) and Coverage (called
“completeness”). It improves on earlier techniques based
on decision tables by supporting nonboolean variables.

The primary goal in the RSML research is to develop
techniques for producing safe systems. RSML, which was
designed to describe real-time process control systems, uses
a combination of the graphical Statecharts notation [7] and
tables. A prototype tool has been developed for checking
RSML specifications for “completeness” (i.e., every possi-
ble input event and the system’s response to the event must
be stated explicitly) and “consistency” (i.e., no input event
can cause a transition to two different system states). The
tool, which has been applied to large portions of the re-
quirements specification of TCAS II, a collision avoidance
system for commercial aircraft, detected errors not caught
by an extensive manual review. Other tools are also being
developed to analyze RSML specifications.

Another related system is the Prototype Verification Sys-
tem (PVS) [19], a specification and verification environment
developed by SRI. PVS consists of a specification language,
a type checker, and an interactive proof checker. The PVS
specification language is based on a typed higher-order logic.
The PVS prover performs a series of inference steps that can
reduce a proof goal to simpler subgoals. These subgoals can
be discharged automatically by the primitive proof steps of
the prover. The primitive proof steps incorporate decision
procedures for doing arithmetic, automatic rewriting, and
BDD-based boolean simplification. Although some are at-
tempting to use the language of PVS to produce require-
ments specifications, PVS is primarily designed to specify
mathematical models and to prove theorems about those
models using deductive reasoning supported by powerful
decision procedures.

6. Conclusions

While the enhancements described in this paper are rel-
atively straightforward, they have helped to make our tools
significantly more useful for industrial-strength applica-
tions. Further enhancements to the tools are planned:

� Although the number of cases the consistency checker
can handle has increased substantially in the period
since its introduction,occasionally the checker encoun-
ters logical expressions that are too complex to analyze
efficiently. We are investigating tools such as Omega
[21] and PVS that can rewrite and simplify these ex-
pressions so they may be analyzed more efficiently.

12



� In another project, we have built an environment called
TAME for specifying and proving properties about
real-time systems on top of PVS [2, 3]. We are cur-
rently exploring the integration of TAME into our SCR
toolset. Integration of TAME will allow the user of our
tools to verify SCR specifications using a mechanical
theorem prover.

Our hope is that our enhanced tools will be used to pro-
duce high-quality requirements specifications. These spec-
ifications should lead to systems that are more likely to
perform as required and less likely to lead to accidents.
The existence of high-quality requirements specifications
should also lead to significant savings in software develop-
ment costs.

Acknowledgments

We gratefully acknowledge the efforts of Carolyn
Gasarch and Todd Grimm in developing the toolset soft-
ware. We also thank Steve Miller of Rockwell and John van
Schouwen of NORTEL for their extensive experiments with
our tools and their helpful and detailed feedback. Many as-
pects of the tools have improved based on their comments.
The second author extends his gratitude to Ramesh Bharad-
waj for sharing his Latex secrets. We also appreciate the
constructive comments of the anonymous referees.

References

[1] T. A. Alspaugh, S. R. Faulk, K. H. Britton, R. A. Parker,
D. L. Parnas, and J. E. Shore. Software requirements for the
A-7E aircraft. Technical Report NRL-9194, Naval Research
Lab., Wash., DC, 1992.

[2] M. Archer and C. Heitmeyer. Mechanical verification of
timed automata: A case study. In Proc., Real-Time Applica-
tions Symposium, 1996.

[3] M. Archer and C. Heitmeyer. TAME: A specialized specifi-
cation and verification system for timed automata. In Proc.,
Real-Time Systems Symposium (Work-in-Progress Session),
1996.

[4] J. M. Atlee and J. Gannon. State-based model checking of
event-driven system requirements. IEEE Trans. Softw. Eng.,
19(1):24–40, Jan. 1993.

[5] R. Bharadwaj and C. Heitmeyer. Verifying SCR require-
ments specifications using state exploration. In Proc., First
ACM SIGPLAN Workshop on Automatic Analysis of Soft-
ware, 1997.

[6] R. W. Butler. An introduction to requirements capture using
PVS: Specification of a simple autopilot. Technical Report
NASA TechnicalMemorandum 110255,NASA LangleyRe-
search Center, Hampton VA, 1996.

[7] D. Harel. Statecharts: A visual formalism for complex sys-
tems. Sci. Comput. Programming, 8(3):231–274, June 1987.

[8] M. P. E. Heimdahl and N. Leveson. Completeness and con-
sistency analysis of state-based requirements. In Proc. of

17th Int’l Conf. on Softw. Eng. (ICSE ’95), pages 3–14, Seat-
tle, WA, Apr. 1995. ACM.

[9] C. Heitmeyer, A. Bull, C. Gasarch, and B. Labaw. SCR*: A
toolset for specifying and analyzing requirements. In Proc.
10th Annual Conf. on Computer Assurance(COMPASS ’95),
pages 109–122, Gaithersburg, MD, June 1995.

[10] C. Heitmeyer, B. Labaw, and D. Kiskis. Consistency check-
ing of SCR-style requirements specifications. In Proc., In-
ternational Symposium on Requirements Engineering, Mar.
1995.

[11] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. Automated
consistency checking of requirements specifications. ACM
Trans. Software Eng. and Methodology, July 1996.

[12] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. Tools for
analyzing SCR-style requirements specifications: A formal
foundation. Technical report, Naval Research Lab., Wash.,
DC, 1997. In preparation.

[13] K. Heninger, D. L. Parnas, J. E. Shore, and J. W. Kallan-
der. Software requirements for the A-7E aircraft. Technical
Report 3876, Naval Research Lab., Wash., DC, 1978.

[14] G. Holzmann. Design and Validation of Computer Protocols.
Prentice-Hall, 1991.

[15] D. N. Hoover and Z. Chen. Tablewise, a decision table
tool. In Proc. 10th Annual Conf. on Computer Assurance
(COMPASS ’95), pages 97–108, Gaithersburg, MD, June
1995. IEEE.

[16] J. Kirby. Example NRL/SCR software requirements for an
automobile cruise control and monitoring system. Technical
Report TR-87-07, Wang Institute of Graduate Studies, 1987.

[17] N. G. Leveson, M. P. Heimdahl, H. Hildreth, and J. D.
Reese. Requirements specification for process-control sys-
tems. IEEE Trans. Softw. Eng., 20(9), Sept. 1994.

[18] S. P. Miller, Mar. 1997. Personal communication.
[19] S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal

verification for fault-tolerant architectures: Prolegomena to
the design of PVS. IEEE Trans. Softw. Eng., 21(2):107–125,
Feb. 1995.

[20] D. L. Parnas and J. Madey. Functional documentation for
computer systems. Science of Computer Programming,
25(1):41–61, Oct. 1995.

[21] W. Pugh. A practical algorithm for exact array dependence
analysis. CACM, 35(8):102–114, Aug. 1992.

[22] M. Shaw. Comparing architectural design styles. IEEE Soft-
ware, 1995.

[23] S. L. Smith and S. L. Gerhart. STATEMATE and cruise
control: A case study. In Proc., COMPSAC, 1988.

[24] R. M. Smullyan. First-Order Logic. Springer-Verlag, 1968.
Republished by Dover Publications Inc., 1993.

[25] A. J. van Schouwen. The A-7 requirements model: Re-
examination for real-time systems and an application for
monitoring systems. Technical Report TR 90-276, Queen’s
Univ., Kingston, ON, Canada, 1990.

[26] A. J. van Schouwen, Dec. 1996. Personal communication.

13


